[hal-00782034, v1] Learning Equilibria in Games by Stochastic Distributed Algorithms

نویسندگان

  • Olivier Bournez
  • Johanne Cohen
چکیده

We consider a class of fully stochastic and fully distributed algorithms, that we prove to learn equilibria in games. Indeed, we consider a family of stochastic distributed dynamics that we prove to converge weakly (in the sense of weak convergence for probabilistic processes) towards their mean-field limit, i.e an ordinary differential equation (ODE) in the general case. We focus then on a class of stochastic dynamics where this ODE turns out to be related to multipopulation replicator dynamics. Using facts known about convergence of this ODE, we discuss the convergence of the initial stochastic dynamics: For general games, there might be non-convergence, but when convergence of the ODE holds, considered stochastic algorithms converge towards Nash equilibria. For games admitting Lyapunov functions, that we call Lyapunov games, the stochastic dynamics converge. We prove that any ordinal potential game, and hence any potential game is a Lyapunov game, with a multiaffine Lyapunov function. For Lyapunov games with a multiaffine Lyapunov function, we prove that this Lyapunov function is a super-martingale over the stochastic dynamics. This leads a way to provide bounds on their time of convergence by martingale arguments. This applies in particular for many classes of games that have been considered in literature, including several load balancing game scenarios and congestion games. 0 ha l-0 07 82 03 4, v er si on 1 28 J an 2 01 3 Author manuscript, published in "Computer and Information Sciences III, Gelenbe, Erol and Lent, Ricardo (Ed.) (2013) 31--38" DOI : 10.1007/978-1-4471-4594-3_4

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Learning of Equilibria in Games: The Ordinary Differential Equation Method

Our purpose is to discuss stochastic algorithms to learn equilibria in games, and their time of convergence. To do so, we consider a general class of stochastic algorithms that converge weakly (in the sense of weak convergence for stochastic processes) towards solutions of particular ordinary differential equations, corresponding to their mean-field approximations. Tuning parameters in these al...

متن کامل

Learning Equilibria in Games by Stochastic Distributed Algorithms

We consider a class of fully stochastic and fully distributed algorithms, that we prove to learn equilibria in games. Indeed, we consider a family of stochastic distributed dynamics that we prove to converge weakly (in the sense of weak convergence for probabilistic processes) towards their mean-field limit, i.e an ordinary differential equation (ODE) in the general case. We focus then on a cla...

متن کامل

Convergent Learning Algorithms for Unknown Reward Games

In this paper, we address the problem of convergence to Nash equilibria in games with rewards that are initially unknown and must be estimated over time from noisy observations. These games arise in many real-world applications, whenever rewards for actions cannot be prespecified and must be learned online, but standard results in game theory do not consider such settings. For this problem, we ...

متن کامل

Robust Learning for Repeated Stochastic Games via Meta-Gaming

This paper addresses learning in repeated stochastic games (RSGs) played against unknown associates. Learning in RSGs is extremely challenging due to their inherently large strategy spaces. Furthermore, these games typically have multiple (often infinite) equilibria, making attempts to solve them via equilibrium analysis and rationality assumptions wholly insufficient. As such, previous learnin...

متن کامل

Hybrid Learning in Stochastic Games and Its Application in Network Security

We consider in this chapter a class of two-player nonzero-sum stochastic games with incomplete information, which is inspired by recent applications of game theory in network security. We develop fully distributed reinforcement learning algorithms, which require for each player a minimal amount of information regarding the other player. At each time, each player can be in an active mode or in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013